Math 250 3.1 Introducing the Derivative (Find the derivative using limits!)

Objectives

- 1) Connections:
 - a. (From 2.1) Average velocity was slope of secant line to position function and instantaneous velocity was slope of tangent line to position function.
 - b. Generalize position to any function f(x), and velocity to rate of change.
 - c. Average rate of change = slope of secant line to f(x)
 - d. Instantaneous rate of change = slope of tangent line to f(x) = limit of the average rate of change
- 2) Use three different notations for slope of secant line, or average rate of change.
- 3) Use three different notations for slope of tangent line, or instantaneous rate of change
- 4) Find the slope of the tangent line to a curve at a specific point using limits
- 5) Write the equation of a tangent line.
- 6) Find the slope of the tangent line to a curve for a general point (x, f(x)) using limits.
- 7) Understand that evaluating the derivative function at a given value gives the slope of the tangent line at that *x*-coordinate
- 8) Memorize the definition of derivative (using limits).
- 9) IMPORTANT: If instructions say "definition of derivative" or "limit process", you MUST use limits, not shortcuts. [Caution to students who've had some calculus before: Writing just the answer will earn *no* credit.]

Big Picture: Before calculus and limits, we ask "how much is the graph increasing *between* these two points?" and find the *average* rate of change over an interval. Now we ask "how much is the graph increasing at this point?" and find the *instantaneous* rate of change of a function at any single point (a, f(a)).

First Goal: Find the slope of the tangent line to f(x) at x = a

Slope of Tangent Line, at x = a, Option 1

Choose $(x_1, y_1) = (a, f(a))$ and $(x_x, y_2) = (x, f(x))$ in the slope formula to get:

Average rate of change =
$$m_{SEC} = \frac{f(x) - f(a)}{x - a}$$

Instantaneous rate of change=
$$m_{TAN} = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Slope of Tangent Line, at x = a, Option 2

Choose $(x_1, y_1) = (a, f(a))$ and $(x_x, y_2) = (a + h, f(a + h))$ in the slope formula to get:

Average rate of change =
$$m_{SEC} = \frac{f(a+h) - f(a)}{h}$$

Instantaneous rate of change
$$m_{TAN} = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Slope of Tangent Line, at x = a, Option 3

Choose $(x_1, y_1) = (a, f(a))$ and $(x_x, y_2) = (a + \Delta x, f(a + \Delta x))$ in the slope formula to get:

Average rate of change = $m_{SEC} = \frac{f(a + \Delta x) - f(a)}{\Delta x}$

Instantaneous rate of change $m_{TAN} = f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$

Second Goal: Find the slope of the tangent line to f(x) for any value of x -- find a function which gives this slope when we evaluate it.

Definition of Derivative, Option 1, evaluated at x = a

Instantaneous rate of change= $m_{TAN} = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Note: We can't use this option for general x, because we get $\frac{0}{0}$, the indeterminate form.

Definition of Derivative, Option 2, for any value of x

Instantaneous rate of change $m_{TAN} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Definition of Derivative, Option 3, for any value of x

$$m_{TAN}(x) = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Vocabulary

The resulting function is called the <u>derivative</u> or <u>first derivative</u>, f'(x), pronounced "f-prime-of-x".

Finding the derivative is called differentiating or the process of differentiation.

<u>Differentiate</u> of take the derivative of the function f(x) to find the derivative f'(x).

[CAUTION: Do not call this process "to derive", "deriving", or "derivation", which means which means the algebraic justification of a formula!]

Notation

If y = f(x), the derivative can be written using many different notations:

$$f'(x) = \frac{dy}{dx} = y'(x) = \frac{d}{dx} [f(x)] = \frac{d}{dx} [y(x)] = D_x [y] = D_x [f(x)]$$

In general, the notation $\frac{d}{dx}$ is the operator, meaning the notation that says "take the derivative".

If we refer to the derivative evaluated at the point x = a, we sometimes substitute a for x, and we sometimes need a vertical bar

$$f'(a) = \frac{dy}{dx}\Big|_{x=a} = y'(a) = \frac{d}{dx} [f(x)]\Big|_{x=a} = \frac{d}{dx} [y(x)]\Big|_{x=a} = D_x [y]\Big|_{x=a} = D_x [f(x)]\Big|_{x=a}$$

Examples and Practice:

- 1) Using the function $f(x) = -16x^2 + 96x$,
 - a. Find the slope of the tangent line at (2, f(2))
 - b. Write the equation of the tangent line.
- 2) Using the function $f(x) = \sqrt{x-3}$ and the definition of the derivative,
 - a. Find f'(x).
 - b. Use f'(x) to find the slope of the tangent line to $f(x) = \sqrt{x-3}$ when x = 7
 - c. Write the equation of the tangent line.
- 3) Using the function $g(t) = \frac{1}{t-3}$,
 - a. Find g'(t) using the definition of the derivative.
 - b. Find the slope of the tangent line at (2, g(2))
 - c. Write the equation of the tangent line.

- a) Find slope of tangent line at (2, f(2)). b) Write equation of tangent line.

$$f(2) = -16(2)^2 + 96(2) = 128$$

option 1:
$$f'(a) = \lim_{x \to a} f(a) - f(a)$$
 where $a = 2$. $f'(a) = m_{TAN}$

$$f'(2) = \lim_{x \to 2} (-16x^2 + 96x) - 128$$

$$= \lim_{x \to 2} -16(x^2 - 6x + 8)$$

$$= \lim_{x \to 2} -16(x - 4)(x - 2)$$

$$= \lim_{x \to 2} -16(x - 4)$$

option 2:
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 where $a = 2$ $f'(a) = m_{TAN}$

$$= \lim_{h \to 0} \frac{-16(2+h)^2 + 96(2+h) - 128}{h}$$
 substitute

$$= \lim_{h \to 0} \frac{-16(H+Hh+H^2) + 192 + 96h - 128}{h}$$
 for dist,

$$= \lim_{h \to 0} \frac{-6H - 6Hh - 16h^2 + 6H + 96h}{h}$$
 dist,

$$= \lim_{h \to 0} \frac{-16h^2 + 32h}{h}$$
 combine

$$= \lim_{h \to 0} \frac{h(-16h+32)}{h}$$
 factor, cancel

$$= \lim_{h \to 0} (-16h+32)$$

option3: same as option 2 with h= Dx.

= -16(0) + 32

32

M250

b) Equation of tangent line

option 1: point-slope formula

$$y-y_1=m(x-x_1)$$

$$\begin{cases} m=32 & \text{from part a} \\ x_i=2 & \text{given} \\ y_i=f(2)=128 \end{cases}$$

$$Y = 32x - 64 + 128$$

 $Y = 32x + 64$

option 2: slope - intercept form

$$y = mx + b$$

$$x=2$$
 given

$$128 = 64 + b$$

rewrite with m & b only

a) Cannot use option 1 to find the function f(x)

option 2:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \sqrt{x+h-3} - \sqrt{x-3}$$

=
$$\lim_{h\to 0} (\sqrt{x+h-3} - \sqrt{x-3})(\sqrt{x+h-3} + \sqrt{x-3})$$
 mult by conjugate

$$= \lim_{x \to 0} (x+h-3) - (x-3)$$

$$h \rightarrow 0 \frac{(x+h-3)}{h(\sqrt{x+h-3}+\sqrt{x-3})}$$

$$=\lim_{h\to 0} \frac{x+h-3-x+3}{h(\sqrt{x+h-3'}+\sqrt{x-3'})}$$

$$\frac{x}{x(\sqrt{x+h-3}+\sqrt{x-3})}$$

M250

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h-3} + \sqrt{x-3}}$$

$$\frac{1}{\sqrt{x+0-3}+\sqrt{x-3}}$$

$$= \frac{1}{\sqrt{x-3} + \sqrt{x-3}}$$

$$= \begin{bmatrix} 1 \\ 2\sqrt{x-3} \end{bmatrix}$$

combine like radicals

$$f'(x) = 1$$
 from parta)
 $2\sqrt{x-3}$

$$f'(7) = \frac{1}{2\sqrt{7-3}}$$
 evaluate

$$x=7 \Rightarrow y=f(7)=\sqrt{7-3}=\sqrt{4}=2$$

option 1 point-slope formula

$$y-2=\frac{1}{4}(x-7)$$

$$y = \frac{1}{4}x - \frac{7}{4} + 2$$

$$y = \frac{1}{4}x + \frac{1}{4}$$

$$2 = \cancel{+}(\cancel{7}) + b \implies b = \cancel{4}$$

$$\boxed{Y = \cancel{+} \times + \cancel{4}}$$

(3)
$$g(t) = \frac{1}{t-3}$$

a) Find g'(t) - from definition

b) Find slope of tangent at (2, g(2))
c) Write the equation of the tangent line at (2, g(2))

a) option 2:
$$g'(t) = \lim_{h \to 0} g(t+h) - g(t)$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t-3}$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t-3}$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t+h-3}$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3}$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3}$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3} - \frac{1}{t+h-3}$$

$$= \lim_{h \to 0} \frac{1}{t+h-3} - \frac{1}{t+h-3} -$$

=
$$\lim_{h\to 0} \frac{t-3-t-h+3}{h(t-3)(t+h-3)}$$
 dist neg

=
$$\lim_{h\to 0} \frac{-h}{h(t-3)(t+h-3)}$$
 combine

$$= \lim_{h \to 0} \frac{-1}{(t-3)(t+h-3)}$$
 cancel

$$= \frac{-1}{(\pm 3)(\pm \pm 0.3)}$$
 take limit by subst h=0.

$$g'(t) = \begin{bmatrix} -1 \\ (t-3)^2 \end{bmatrix}$$

b)
$$g'(a) = m_{tAN} = \frac{-1}{(2-3)^2} = \frac{-1}{(-1)^2} = \frac{-1}{1} = \boxed{-1}$$

c)
$$y-y_1=m(t-t_1)$$
 $y_1=g(a)=\frac{1}{2}=-1$
 $y-(-1)=-1(t-a)$ $y_1=g(a)=\frac{1}{2}=-1$
 $y=-1=g'(a)$
 $y+1=-t+1$

or
$$y = mt + b$$

 $-1 = -1(2) + b$
 $-1 = -2 + b$
 $1 = b$
 $y = -t + 1$

Key points about the tricky algebra maneuvers

- · conjugate is the opposite sign between the radicals; signs inside radicals stay exactly the same
- · FOIL numerator should cause middle terms to be the same, but opposite signs, and cancel out.
- · Do not forget to write the conjugate in the denominator! (x-a)}
- Do not distribute Δx in denominator -- you'll have to factor it out again to cancel it. $h = \Delta x = (x a)$
- " when multiplying $(-\sqrt{x-3})(+\sqrt{x-3})$ use parentheses -(x-3) and distribute negative on next step. This prevents sign errors.
- · EVERY term in the numerator, except (xa)
 Should disappear when combining like
 terms,
- · Memorize the algebraic signposts of correct work · difference of squares removes radicals in numerator
 - · all terms cancel after dist neg.
 - · $\frac{\Delta x}{\Delta x}$ cancels out (or $\frac{h}{h}$ or $\frac{x-a}{x-a}$).
- . If you make an algebra error, one or more of these signposts won't happen.